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a  b  s  t  r  a  c  t

The  present  study  adopted  a two-step  approach  in  the  development  of  a  methodology  to  identify  and  rank
the important  factors  affecting  in-vehicle  particulate  matter  (PM).  Firstly,  the  important  factors  affecting
the monitored  vehicular  PM  were  identified  using  regression  trees,  considering  several  factors  (mete-
orology,  time-related,  indoor  sources,  on-road,  and  ventilation)  that  could  impact  the  vehicular  indoor
air quality.  Secondly,  the analysis  of  variance  was  used  as a  complementary  sensitivity  analysis  to  the
regression  tree  results  to rank  the  significant  factors  affecting  vehicular  PM.  In-vehicle  PM  concentrations
and  sub-micron  particle  numbers  were  mainly  influenced  by  the  monthly/seasonal  changes.  Visibility
eywords:
ndoor air quality
articulate matter
egression trees
ublic transport buses

and ambient  PM2.5 additionally  influenced  the  sub-micron  particles.  Furthermore,  this  study  emphasized
the  variation  of  the  monitored  vehicular  PM  levels  under  different  combinations  of  the  ranked  influential
factors.

© 2012 Elsevier B.V. All rights reserved.

iodiesel
ensitivity analysis

. Introduction

Indoor air quality (IAQ) is one of the major environmental con-
erns, since people spend nearly 90% of their time indoors and about
% of their daily time is spent commuting, mostly between the
orkplace and their residences [1].  People are exposed to higher

evels of traffic contaminants when they drive in heavy traffic, stand
ear idling vehicles, and spend time at places near roads having
igh traffic, especially if the location is downwind of a road [2].  The
egree of exposure to contaminants for people commuting in a bus

s much higher than that of human exposure occurring at bus stops
r during loading and unloading [3].  A number of studies observed
he concentrations of carbon monoxide (CO), oxides of nitrogen
NOx), and fuel-related volatile organic compounds (VOCs) signif-
cantly higher inside the vehicles than in the ambient air [4–11].
igh concentrations of toxic contaminants, such as benzene and
ther aromatic VOC’s were observed within the vehicle microenvi-
onments that contribute to about 10–60% of a nonsmoker’s total
xposure [6,12].  Therefore, it is important to study the effect of par-
iculate matter (PM) on in-vehicle air quality and determine the
actors that influence the vehicular PM.
A study of exposure to PM less than 10 micrometers (PM10.0),
M less than 2.5 micrometers (PM2.5), metals, thirteen organic
ompounds, CO, fine particle counts and black carbon (BC)

∗ Corresponding author. Tel.: +1 419 530 8136.
E-mail address: akumar@utnet.utoledo.edu (A. Kumar).

304-3894/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2012.01.072
identified driving lane, roadway type, congestion level, time of the
day, and exhaust from lead vehicles as the significant factors affect-
ing in-vehicle contaminants [7].  Occupant exposure to in-vehicle
PM and CO was  influenced by the time of day, average vehicle
speed, wind speed, and relative humidity (RH) [9].  Vehicle exhaust
and self-intrusion predominantly affected in-vehicle BC, particle-
bound polycyclic aromatic hydrocarbons (PAH), nitrogen dioxide
(NO2), particle counts, and PM2.5 when the windows were closed;
while ventilation settings played a major role when the windows
were open [13]. Road type, following distance between the lead
vehicle and follow vehicle, and exhaust location of the lead vehi-
cle affected vehicular BC, ultrafine particles (UFP), NOx, CO, carbon
dioxide (CO2), PM2.5, PM size distribution, and PM-bound PAH [14].
In-vehicle PM10.0 and UFP were mainly influenced by stop-and-
go traffic predominantly found at signals [15]. Based on the route
selected, there was  considerable variation in the vehicular PM2.5
exposure levels [16].

Lead vehicle affected vehicular BC, particle-bound PAH, and NO2
when the windows were opened; while the type of test bus affected
in-vehicle levels when the windows were closed [17]. In-vehicle
CO2, CO, sulfur dioxide (SO2), NO, NO2, and PM were influenced
by the monthly and seasonal changes [18]. Route travelled and
peak hours mainly influenced vehicular CO2, CO, SO2, and PM
levels [19]. Mean 8-h occupant exposures to PM2.5 were statisti-

cally similar in 20% grade biodiesel (BD20) and ultra low sulfur
diesel buses [20]. There are limited studies that investigated the
occupant exposure to in-vehicle contaminants on different trans-
portation modes [21–24].  Outdoor concentrations and traffic had a

dx.doi.org/10.1016/j.jhazmat.2012.01.072
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:akumar@utnet.utoledo.edu
dx.doi.org/10.1016/j.jhazmat.2012.01.072
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Table 1
Average values of independent variables during different seasons and ventilation indicators.

Independent variables Seasons

Spring (April 2007 to
June 2007)

Summer (July 2007 to
September 2007)

Fall (October 2007 to
December 2007)

Winter (January 2008
to March 2008)

Ambient PM2.5 (�g/m3) 12.99 17.71 14.74 8.07
Indoor temp. (◦F) 76.80 76.41 77.65 77.18
Indoor RH (%) 34.27 34.10 36.98 33.10
Ambient temp. (◦F) 59.67 75.80 60.59 28.54
Ambient RH (%) 60.71 56.76 72.66 76.97
Wind speed (mph) 7.48 6.28 7.53 10.66
Visibility (statute miles) 8.93 8.92 8.30 6.69
Precipitation (inches) 0.04 0.17 0.07 0.05
Passengers per 5-min (per
hour)

5.75 (69) 5 (60) 6 (72) 4.91 (59)

Light  vehicles per minute (per
hour)

0.23 (14) 0.27 (16) 0.35 (21) 0.28 (17)

Heavy vehicles per minute (per
hour)

0.14 (9) 0.14 (9) 0.16 (10) 0.16 (10)

Run/close (minutes per hour) 42.32 39.49 38.13 36.88
Idle/open (minutes per hour) 8.10 10.17 9.15 7.82
Idle/close (minutes per hour) 9.58 10.34 12.72 15.30
Ventilation indicators
Difference between indoor
temp. and ambient temp.

17.13 0.61 17.06 48.64

Difference between ambient 26.44 22.66 35.68 43.87
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ignificant impact on vehicular PM [21]. Low wind speed con-
ributed to an accumulation of in-vehicle CO and PM2.5 levels [22].
n-vehicle PM2.5 and PM10.0 were influenced by air conditioning
23]; the route selected significantly affected vehicular PM2.5 [24].
ll the above mentioned studies adopted regression analysis to

dentify the important factors affecting vehicular IAQ. Only one
tudy used regression tree analysis to model vehicular IAQ and
bserved the regression tree method to outperform the regression
ethod [25].
From the literature review, it can be observed that the con-

aminant level buildup inside a vehicle is due to a combination
f different factors, and not a result of variation due to a single
ariable. Regression and regression tree methods were adopted to
dentify the important factors affecting vehicular IAQ. Prior stud-
es quantified the in-vehicle contaminants in relation to a single
nfluential variable. None of the vehicular studies quantitatively
nalyzed and characterized the IAQ as the simultaneous function
f multiple influential variables. To fill the knowledge gap, this
tudy proposed a two-step approach to overcome the problem of
uantitatively analyzing and characterizing the vehicular IAQ, by
sing advanced methods of the regression trees and the analysis
f variance (ANOVA). In the first step, the important factors affect-
ng vehicular PM were identified by developing regression trees,
sing CART® software. Next, the identified important factors from
egression tree were ranked (based on the statistical significance)
y performing the ANOVA as a complimentary sensitivity analysis,
sing SPSS® software. The methodology of ranking the factors using
he ANOVA as a complementary sensitivity analysis to the regres-
ion tree results was adopted from the sensitivity analysis study
n food safety risk models [26]. Additionally, this study quantified
low, medium, high) in-vehicle PM relationships with the ranked
nfluential factors.

. Methodology
.1. Study area

A BD20 bus was selected from the Toledo Area Regional Tran-
it Authority (TARTA) 500 series fleet, which had all the cameras
3 (moderate) 4 (reduced)

located inside the bus in working condition. It operated on a single
preassigned daily route. The route selected for the study was  Route
20, which runs between the TARTA garage and Meijer, on the Cen-
tral Avenue Strip [27]. The locations of the bus, when on the run,
were identified by the GPS unit located inside the bus. Continu-
ous monitoring of the PM concentrations and numbers inside the
BD20 bus were done using the GRIMM® 1.108 aerosol spectrometer
[28]. Other in-vehicle gases (NO, NO2, and SO2) that can possibly
influence indoor PM levels were monitored simultaneously with
indoor temperature (temp.) and indoor RH, using the YES Plus®

instrument [29]. The instruments were held in position within a
wired mesh box using the velcro attachments, and the instruments
drew power continuously from the adapters connected to the bus.
A comprehensive description of the study area, instrumentation,
experimental setup, and test protocol were documented elsewhere
[20].

2.2. Database development

Data collection included downloading data from the instru-
ments, obtaining meteorological data, designating time-related
variables, and monitoring the real-time on-road variables. Data col-
lected between 6:00 a.m. and 11:00 p.m. over a period of one year
(April 2007 to March 2008) were used in this study. Data down-
loaded from both the instruments were set for 1-min intervals that
were averaged to 1-h for analysis. More details on the instrument
calibration and maintenance procedures were documented else-
where [18,20].  Different factors that can possibly affect vehicular
IAQ, such as the meteorological variables (ambient temp., ambient
RH, wind speed, sky condition, visibility, weather type, precipi-
tation, ambient PM2.5), the time-related variables (month of the
year, season of the year, time of the day), and the on-road real-time
variables (passenger count, light vehicles [cars/SUVs] ahead, heavy
vehicles [buses/trucks] ahead, bus status to represent ventilation)
were considered in this study. Ambient PM2.5 concentrations were

requested and obtained from the United States Environmental Pro-
tection Agency. Other meteorological data were downloaded for
the Toledo Express Airport station from the National Climatic Data
Center [30]. The passenger data, vehicles in front of the bus, and
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Table 2
Classification of independent variables.

Variables Low Medium High

Passengers per 5-min <5 5–7 >7
Indoor temp. (◦F) <40 40–72 >72
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Wind speed (mph) <10 10–20 >20
Indoor RH (%) <33 33–67 >67

he bus status were monitored using the hard drive present in the
us that records the video during its run. Ventilation settings were
epresentative of the bus door position. More details on monitor-
ng the real-time on-road variables were documented elsewhere
18,20].

The database, referred to as the complete database included only
he hourly averaged data points with no missing values for any of
he variables. Missing values were found predominantly in the real-
ime on-road monitored variables category, as it was not possible
o get the real-time on-road variable data for all the days on which
ehicular PM and gaseous contaminants were monitored. Missing
ariables were also a result of camera error, hard disk problems,
nd the amount of time required to record the observations on a 1-
in  interval basis. Seasons used in this study are defined as spring

April 2007 to June 2007); summer (July 2007 to September 2007);
all (October 2007 to December 2007); and winter (January 2008
o March 2008). Table 1 presents a summary of the average values
or independent variables and indicators for ventilation in different
easons. From Table 1, one can observe ventilation indicator rank-
ngs were provided for different seasons (considering the ambient
omfort parameters (temp. and RH) to be more or less equivalent
o indoor comfort parameters when there is sufficient ventilation).
here is good ventilation in the summer, moderate ventilation in
he spring and the fall, and reduced ventilation in the winter (based
n the difference between indoor and ambient comfort parameters
r idle/open conditions). The Toledo metropolitan area received a
air amount of snowfall in the winter, and passengers kept the win-
ows closed to keep themselves warm. This observation was made
rom the video analysis. To better understand the relationships
etween the monitored vehicular contaminants and the dependent
ariables, some of the independent variables were further classified
nto three categories (estimated at one-third range approxima-
ion): low, medium, and high, as illustrated in Table 2.

.3. Regression tree methods

Regression tree methods are based on a set of if-then logical
plit conditions developed by the tree building algorithms. These
ethods help predict the relations between variables when there is

ery little or no knowledge on any theories or predictions that relate
he variables. The importance of an input variable is indicated by
hether it is selected as the basis for splitting the tree at the highest

ranches, and whether it has been selected at multiple levels of the

ree to further subdivide the data. The partitioned data under dif-
erent nodes of the same branch have significantly different mean
alues. Once a regression tree is constructed, it can be used fur-
her for classification of new data. The regression tree method has

able 3
elative importance of the variables for in-vehicle PM (PM1.0, PM2.5,  PM10.0) obtained from

PM1.0 PM2.5

Variable Score Variable 

Month 100.00 Month 

Visibility 37.65 Visibility 

Ambient RH 27.48 Ambient RH 

Ambient temp. 10.05 Ambient PM2.5

Ambient PM2.5 8.08 Ambient temp. 
s Materials 213– 214 (2012) 140– 146

numerous advantages that it is non-parametric, does not require
variables to be selected in advance, is robust to the effect of out-
liers, can use different combinations of categorical and continuous
variables, can use linear combinations of variables to determine
splits, can adjust for samples stratified on a categorical depen-
dent variable, can discover context dependence and interactions,
can process cases with missing values, can handle data sets with
complex structure, and results are invariant with respect to mono-
tone transformation of the independent variables [31]. Kadiyala
and Kumar [25] provided a complete step-by-step procedure on
running the CART® software to determine the optimal regression
tree model and to identify the influential factors based on data col-
lected for one month. The procedure established by Kadiyala and
Kumar [25] in determining the important factors affecting vehicular
IAQ was used in this study.

2.4. Approach to data analysis

Firstly, the important factors affecting vehicular PM were
obtained (short-listed) by developing an individual regression tree
for each monitored contaminant. No restriction was  specified for
the number of nodes in the regression tree so that mean responses
obtained accounts for all the variability in the output that can
be captured by partitioning the dataset. Complete details of the
developed vehicular PM regression trees were documented in the
CART Report [32], available online at the Alternative Fuels Project
website, maintained by the Air Pollution Research Group, of the
Department of Civil Engineering, at The University of Toledo.

Secondly, the ANOVA was used as a complementary sensitivity
analysis to the regression tree results, to gain additional insights
into the sensitivity of model inputs for a particular partition of
the original input data. Sensitivity analysis results obtained from
the complementary analyses will be different for different nodal
databases. Hence, the partitions of the original input data for each
contaminant were based on the important (primary) splitting cri-
terion (having considerable number of data points) obtained from
developing the regression tree. Ranking of the important factors
(short-listed in the first-step) with statistical significance (Sig.) less
than 0.05 is done based on the F value of the ANOVA results.

3. Results and discussion

The following sections provide more information on ranking the
important factors affecting vehicular PM and characterization of
vehicular IAQ under different combinations of the ranked factors.

3.1. Particulate matter concentrations (PM1.0, PM2.5, and PM10.0)

Table 3 presents a summary of the results for relative impor-
tance of the variables obtained from development of PM1.0, PM2.5,
and PM10.0 regression trees for the complete database. ‘Score’ in

Table 3 is the relative importance of a variable in its role as a sur-
rogate to the primary split. It can be observed from Table 3 that
the important factors affecting vehicular PM1.0 and PM2.5 (strongly
correlated, r = 0.97) are the same. One can also observe the month

 CART runs.

PM10.0

Score Variable Score

100.00 Month 100.00
28.37 Ambient temp. 4.56
26.72

9.75
6.66
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Table 4
Sensitivity results for in-vehicle PM1.0 obtained from the ANOVA.

Variable F-value Sig. Significant Rank Variable F-value Sig. Significant Rank

Month = April 2007 to May  2007, July 2007 to March 2008 Month = June 2007

Visibility 4.610 <0.0001 Yes 1 Visibility 1.456 0.153 No –
Ambient RH 1.806 0.007 Yes 2 Ambient RH 2.994 <0.0001 Yes 1
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Ambient temp. 1.560 0.031 Yes 4 

Ambient PM2.5 1.737 0.045 Yes 3 

nd the ambient temperature to be consistently affecting vehicu-
ar PM1.0, PM2.5, and PM10.0. Visibility did not have an impact on
n-vehicle PM10.0 (moderately correlated with PM2.5 (r = 0.71) and

eakly correlated with PM1.0 (r = 0.51)). Ambient PM2.5 aerosols are
ffective light scatters that reduce the visibility [33]; while PM1.0
erosols are the most efficient scatterers of visible light [34].

Month of the year was found to be the most important factor
n all three cases, as it was the primary splitting criterion and was
elected repeatedly throughout the lower nodes of the regression
ree. Tables 4 and 5, and 6 present the complimentary sensitivity
nalysis results obtained using the ANOVA to rank inputs con-
itional on the month for PM1.0, PM2.5, and PM10.0, respectively.
ankings for the ANOVA complimentary runs in Tables 4–6 were
ased on the magnitude of F value for Sig. less than 0.05. For PM1.0
nd PM2.5, the first dataset included data with months April 2007
o March 2008 excluding June 2007, and the second dataset con-
ained data with the month of June 2007. For PM10.0, the first dataset
ncluded data with months April 2007 to March 2008 excluding

ay  2007 and June 2007, and the second dataset contained data
rom the months of May  2007 and June 2007. From Table 4, one
an observe vehicular PM1.0 to be influenced by the ambient RH
n both cases; while the visibility, the ambient PM2.5, and the
mbient temperature were influential only on the first dataset.
imilar observations were made from Table 5, with the exception
hat the visibility was not found to be influencing either of the
atasets. From Table 6, one can note the ambient temperature to
e significantly influencing the first dataset. At higher temperatures
ith low humidity, there is a generation of secondary particles by

tmospheric photochemical reaction; and there is a positive and
egative relation of atmospheric PM with ambient temperature
nd ambient RH, respectively [35–39].  Cloudy sky conditions have
hown a positive relation to atmospheric PM [38].

Considering the complete database PM concentration regres-
ion trees and the results of the complimentary analysis, the month,
he ambient RH, the visibility, the ambient PM2.5, and the ambient
emperature were ranked as the five important factors, in ascend-
ng order that influenced vehicular PM1.0; while, the month, the
mbient RH, the ambient temperature, and the ambient PM2.5 were
anked as the first, second, third, and fourth, respectively that influ-
nce vehicular PM2.5 Month and the ambient temperature were
anked as the first and second important factors that influence

ehicular PM10.0.

Based on the PM1.0, PM2.5, and PM10.0 regression trees devel-
ped, vehicular PM concentrations were categorized into three
lasses: low (<20 �g/m3), medium (20–45 �g/m3), and high

able 5
ensitivity results for in-vehicle PM2.5 obtained from the ANOVA.

Variable F-value Sig. Significant Rank 

Month = April 2007 to May  2007, July 2007 to March 2008 

Visibility 1.549 0.146 No – 

Ambient RH 1.858 0.005 Yes 2 

Ambient PM2.5 1.718 0.048 Yes 3 

Ambient temp. 2.088 0.001 Yes 1 
Ambient temp. 1.474 0.121 No –
Ambient PM2.5 0.349 0.981 No –

(>45 �g/m3) levels, to better understand the consequences of dif-
ferent combinations of the influential factors.

3.1.1. Influence of the month on PM1.0, PM2.5, and PM10.0 with
varying ambient RH, ambient temperature, and visibility under
different ventilation levels

Medium levels of PM1.0 were observed in the month of June
2007, and low levels of PM1.0 were observed during other months,
with May  2007 having the second highest average PM1.0 con-
centration. Similar trends were observed for vehicular PM2.5
concentrations. Medium levels of PM10.0 were observed in the
months of May  2007 and June 2007; and low levels of PM10.0
were observed in the remaining months. Relatively lower PM1.0
concentrations were observed for the case of (a) June 2007 with
(b) ambient RH > 60% as compared to the case with (b) ambi-
ent RH ≤ 60%. Similar trends were observed for vehicular PM2.5.
Relatively higher PM1.0 concentrations were observed (a) during
the month of June 2007 with (b) ambient RH > 60% for (c) vis-
ibility ≤ 1.13 as compared to the case with visibility > 1.13. The
following observations were made based on consideration of the
relatively higher ventilation during the summer months and con-
sidering visibility to be a function of cloudiness:

• Medium levels of in-vehicle PM1.0 and PM2.5 were observed dur-
ing the month of June 2007 and low levels were observed in other
months.

• Medium levels of in-vehicle PM10.0 were observed during the
months of May  2007 and June 2007, and low levels were observed
during other months.

• The relatively higher in-vehicle PM levels observed during May
2007 and June 2007 could be accounted by accumulation of the
relatively higher outdoor ambient PM (combination of higher
photochemical activity on days with higher ambient tempera-
tures and lower ambient RH) and, to some extent, by the leading
vehicular traffic exhaust when there is moderate ventilation.

• Vehicular PM concentrations were inversely proportional to
ambient RH when there was moderate/good ventilation.

• Lower levels of vehicular PM were observed at higher visibility
(indicating less cloudiness). Vehicular PM levels were inversely
proportional to visibility when there was sufficient ventilation in

the summer.

• In-vehicle PM levels were mainly influenced by ambient PM lev-
els and in-vehicle PM trends were found to be consistent with
atmospheric PM variations.

Variable F-value Sig. Significant Rank

Month = June 2007

Visibility 1.335 0.212 No –
Ambient RH 2.917 <0.0001 Yes 1
Ambient PM2.5 0.436 0.949 No –
Ambient temp. 1.363 0.175 No –
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Table 6
Sensitivity results for in-vehicle PM10.0 obtained from the ANOVA.

Variable F-value Sig. Significant Rank Variable F-value Sig. Significant Rank

Month = April 2007, July 2007 to March 2008 M

Ambient temp. 3.571 0.008 Yes 1 A

Table 7
Relative importance of the variables for in-vehicle particle numbers (0.3–0.4 �m,
0.4–0.5 �m) obtained from CART runs.

Particle numbers (0.3–0.4 �m) Particle numbers (0.4–0.5 �m)

Variable Score Variable Score

Month 100.00 Month 100.00
Season 32.26 Season 35.73
Ambient PM2.5 13.92 Visibility 23.33
Visibility 11.37 Indoor RH 18.26
Indoor RH 10.94 Ambient PM2.5 13.33
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Ambient temp. 3.34 Indoor temp. 4.29
SO2 2.17

.2. Sub-micron particle numbers

Over 95% of the in-vehicle particulates have a diameter less than
 �m.  In-vehicle PM1.0 mass was observed to comprise of over 40%
articles less than 0.40 �m that contribute close to 65–70% of the
otal measured particle count. Particles with aerodynamic diameter
etween 0.40 and 0.50 �m contributed approximately 25% to PM1.0
ass and count concentration [19]. Table 7 presents a summary of

he results for relative importance of the variables obtained from
evelopment of 0.3 �m to 0.4 �m and 0.4 �m to 0.5 �m sized parti-
le regression trees with the complete database. It can be observed
rom Table 7 that the important factors affecting vehicular PM num-
ers, for both size ranges considered are more or less similar. It was

nteresting to note that vehicular SO2 influenced only the particles
ith aerodynamic diameter 0.4–0.5 �m and there was no influence

f vehicular SO2 on particles sized 0.3–0.4 �m.
Month was found to be the most important factor in both the

ases, as it was the primary splitting criterion and was selected
epeatedly throughout the lower nodes of the regression trees.
ables 8 and 9 present the complimentary sensitivity analysis
esults obtained using the ANOVA to rank inputs conditional on
he month for particles with aerodynamic diameter 0.3–0.4 �m
nd 0.4–0.5 �m,  respectively. The classification criterion for both
he particle size ranges are the same (refer Tables 8 and 9). The first
ataset includes data from the months April 2007 to March 2008,
xcluding August 2007. The second dataset contains data with the
onth of August 2007. From Tables 8 and 9, one can observe the

eason, the visibility, and the ambient PM2.5 to influence both the
articles size ranges. Ambient temperature additionally influenced
articles with size range 0.3–0.4 �m;  while indoor RH and SO2
dditionally influenced particles with size range 0.4–0.5 �m. Accu-

ulation mode atmospheric particles (size range: 0.1–1 �m)  vary

ositively with ambient temperature [40].
Considering the complete database PM number regression trees

nd the results of the complimentary analysis, the month/season,

able 8
ensitivity results for in-vehicle particle numbers (0.3–0.4 �m) obtained from the ANOVA

Variable F-value Sig. Significant Rank 

Month = April 2007 to July 2007, September 2007 to March 2008 

Season 767.894 <0.0001 Yes 1 

Ambient PM2.5 2.141 <0.0001 Yes 3 

Visibility 11.769 <0.0001 Yes 2 

Indoor RH 3.360 0.062 No – 

Ambient temp. 1.550 0.013 Yes 4 
onth = May  2007 to June 2007

mbient temp. 1.381 0.071 No –

the visibility, the ambient PM2.5, and the ambient temperature
were ranked as the first, second, third, and fourth important factors
that influence vehicular PM numbers with size range 0.3–0.4 �m;
while the month/season, the ambient PM2.5, the visibility, the
indoor RH, and the SO2 were ranked as the five important fac-
tors, in ascending order that influence PM numbers with size range
0.4–0.5 �m.

Based on the complete database PM number regression trees
developed, vehicular PM number levels were categorized into three
classes: low (<100,000 particles/liter), medium (100,000–180,000
particles/liter), and high (> 180,000 particles/liter) levels, to bet-
ter understand the consequences of different combinations of the
influential factors.

3.2.1. Influence of the month/season on particles with varying
indoor temperature with sufficient ventilation levels

For 0.3–0.4 �m sized particles, high and medium levels were
observed in August 2007 and July 2007, respectively; and low levels
were observed during other months. For 0.4–0.5 �m sized particles,
medium levels were observed in August 2007 and low levels were
observed during other months. In August 2007, high levels of parti-
cles were observed when indoor temperature > 78 ◦F and medium
levels were observed when indoor temperature ≤ 78 ◦F. The high
and medium in-vehicle particle numbers in the summer months
(having the lowest average wind speed, refer Table 1) with good
ventilating conditions could be the result of greater infiltration
of the lead vehicular exhaust particles and the higher accumu-
lation mode particles (normally associated with higher ambient
temperatures). The following observations were made based on
consideration of the relatively higher ventilation during summer
months and considering indoor temperature to be a function of
ambient temperature:

• Medium and high levels of particles were observed only during
the summer months.

• With an increase in the indoor temperature (during summer with
sufficient ventilation), there was  an increase in the accumulation
mode sized particles indoors.

3.3. Validation of the two-step approach

Results obtained from using the complete database were com-
pared with the results obtained from using the test database (90%

of the hourly data points from the complete database) in each stage
to validate the two-step approach in ranking the influential factors
affecting vehicular PM.  More detailed information on the validation
results were documented in the CART report [32]. The following

.

Variable F-value Sig. Significant Rank

Month = August 2007

Season – – – –
Ambient PM2.5 166.158 0.061 No –
Visibility 0.661 0.717 No –
Indoor RH – – – –
Ambient temp. 0.330 0.964 No –
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Table 9
Sensitivity results for in-vehicle particle numbers (0.4–0.5 �m) obtained from the ANOVA.

Variable F-value Sig. Significant Rank Variable F-value Sig. Significant Rank

Month = April 2007 to July 2007, September 2007 to March 2008 Month = August 2007

Season 505.904 <0.0001 Yes 1 Season – – – –
Visibility 17.974 <0.0001 Yes 2 Visibility 0.178 0.990 No –
Indoor RH 4.006 0.041 Yes 3 Indoor RH – – – –
Ambient PM2.5 1.960 <0.0001 Yes 5 Ambient PM2.5 474.796 0.011 Yes 1
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Indoor temp. 2.800 0.216 No – 

SO2 3.083 <0.0001 Yes 4 

bservations summarize the validation results for the two-step
pproach using both databases:

Regression trees performed reasonably well, considering that the
short-listed factors (primary variable included) determined using
the complete database were also obtained using the test database
(though with different scores).
In addition to the complete database short-listed factors, more
variables (with low scores) affected the test database for in-
vehicle PM2.5 and sub-micron particles.
The regression tree primary splitting criterion remained
unchanged, irrespective of the database considered.
The ANOVA ranking results were consistent for both the
databases, considering the same set of variables were determined
statistically significant.
Additional factors identified by the regression tree analysis, using
the test database, were not statistically significant.

. Conclusion

A two-step approach to identify and rank the important fac-
ors affecting in-vehicle PM was developed and successfully applied
o an experimental field program. The influential variables affect-
ng the monitored vehicular PM were obtained in the first step
y performing regression tree analysis. The identified influential
ariables were then ranked, based on the ANOVA results that
erved as a complimentary sensitivity analysis to the regression
ree results. An experimental field study was performed to collect
AQ data in public transport vehicles for a period of one year, to
upport the development of the methodology. Vehicular PM con-
entrations and sub-micron particles were mainly influenced by
he monthly/seasonal changes; while the visibility and the ambient
M2.5 additionally influenced sub-micron particles. This study also
uantitatively analyzed and characterized the IAQ (low, medium,
nd high levels) as a function of multiple influencing variables,
ased on the observations from the complete database regression
rees. The single limitation of this approach was  that the ANOVA
ensitivity results will be different for different nodal databases.
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